The pivotal role of reliable electricity to achieve decarbonization in the NW
About Us: Energy & Environmental Economics (E3)

- **DERs & Rates**: Analyzes distributed energy resources, emphasizing their costs and benefits now and in the future. Supports rate design and distribution system planning.

- **Asset Valuation**: Determines asset values from multiple perspectives. Uses proprietary in-house models and in-depth knowledge of public policy, regulation, and market institutions.

- **Clean Energy**: Provides market and policy analysis on clean energy technologies and climate change issues. Includes comprehensive and long-term GHG analysis.

- **Planning**: Develops and deploys proprietary tools to aid resource planners. Informs longer-term system planning and forecasting.

- **Market Analysis**: Models wholesale energy markets both in isolation and as part of broader, more regional markets. Key insights to inform system operators and market participants.

E3 is a 60+ person energy & environmental economics consulting firm based in SF with five practice areas.
Over the past three years, E3 has completed a trio of studies* that examine the NW’s transition to a low-GHG energy system, these studies identify:

1. The pivotal role of electricity in achieving deep decarbonization in the region
2. Strategies to decarbonize electricity at least-cost

The Pacific Northwest is expected to undergo significant changes to its generation resource mix over the next 20 years due to changing economics and policy goals. These changes include:

- Increased penetration of wind and solar generation
- Retirements of coal generation
- A shift in the role of natural gas generation

This transition raises questions about the region’s ability to serve load reliably as firm generation is replaced with variable resources

*Note that the geographic scope of these studies varies. More detail is available in the appendix
Agenda

+ The electric sector in the context of economy-wide decarbonization

+ Ensuring reliability of a very-low emissions electricity system
 - What is resource adequacy?
 - How resource adequate is the region today?
 - Resource adequacy over the coming decade
 - Resource adequacy in a deeply decarbonized 2050 electricity system
The Electric Sector in the Context of Economy-wide Decarbonization
Four “Pillars” of Decarbonization to Meet Long-Term Goals

1. Energy efficiency & conservation
2. Electrification
3. Low carbon electricity
4. Low carbon fuels

+ Four foundational elements are consistently identified in studies of strategies to meet deep decarbonization goals.

+ Across most decarbonization studies, electric sector plays a central role in meeting goals:
 - Through direct carbon reductions
 - Through electrification of loads to reduce emissions in other sectors

Energy + Environmental Economics
Deep decarbonization scenarios mean both annual and peak load growth

- A low carbon electricity system enables emissions reductions elsewhere in the economy via measures like transportation and building electrification.
- However, those measures will increase both the annual and peak loads in the Northwest, even in scenarios that include deep energy efficiency savings.

![Annual Load Growth](chart)

![1-in-10 year space-heating peak](chart)
Fossil generation emissions decline in the near-term as coal generation is replaced by gas and renewables. The largest source of incremental generation is wind energy.

This example is consistent with a 90% reduction in electric sector GHG emissions relative to 1990.
Some approaches to decarbonize electricity are more effective than others.

Note: Reference Case reflects current industry trends and state policies, including Oregon’s 50% RPS goal for IOUs and Washington’s 15% RPS for large utilities.
Ensuring Reliability in a Low-Carbon Electricity System
What is “capacity” and why is it important?

+ Capacity is the ability to generate electric energy at any given point in time

+ Utilities need adequate generation capacity to meet continuously-varying electric loads reliably over a broad range of conditions

+ The consequence of inadequate capacity is loss of load
 - Loss of load is inconvenient, expensive, and potentially life-threatening

+ Utilities plan their systems to ensure that loss of load occurs very rarely

Source: http://www.energy.siemens.com
1. **High Load**
 - **1-in-50+ peak load year**
 - Highest on record
 - Low renewable production despite > 100 GW of installed capacity during some hours
 - Loss of load event of nearly 48 hrs
 - Loss of load magnitude of over 30 GW

2. **Low Renewables**
 - Low renewable production despite > 100 GW of installed capacity during some hours
 - 1-in-20 low hydro year
 - 5th lowest on record

3. **Drought Hydro Year**
 - 1-in-50+ peak load year
 - Highest on record
 - Loss of load event of nearly 48 hrs
 - Loss of load magnitude of over 30 GW
HOW RESOURCE ADEQUATE IS THE NW TODAY?
2018 System in the Northwest

<table>
<thead>
<tr>
<th>Resource</th>
<th>2018 Nameplate MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydro</td>
<td>35,221</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>12,181</td>
</tr>
<tr>
<td>Coal</td>
<td>10,895</td>
</tr>
<tr>
<td>Wind</td>
<td>7,079</td>
</tr>
<tr>
<td>Nuclear</td>
<td>1,150</td>
</tr>
<tr>
<td>Solar</td>
<td>1,557</td>
</tr>
<tr>
<td>Other Hydro</td>
<td>524</td>
</tr>
<tr>
<td>Biomass</td>
<td>489</td>
</tr>
<tr>
<td>Geothermal</td>
<td>80</td>
</tr>
<tr>
<td>Demand Response</td>
<td>299</td>
</tr>
<tr>
<td>Imports</td>
<td>2,500</td>
</tr>
</tbody>
</table>

Capacity Mix %

- **Hydro**: 35,221 MW
- **Natural Gas**: 12,181 MW
- **Coal**: 10,895 MW
- **Wind**: 7,079 MW
- **Nuclear**: 1,150 MW
- **Solar**: 1,557 MW
- **Biomass**: 489 MW
- **Geothermal**: 80 MW
- **Demand Response**: 299 MW
- **Imports**: 2,500 MW
The Northwest system is in very tight load-resource balance

Over the past year, studies from multiple organizations have been released that show an electric sector capacity deficit in the Northwest

These deficits appear due to a combination of thermal power plant retirements and renewed load growth in the region
WHAT COULD THE RESOURCE ADEQUACY SITUATION BE IN 2030?
Northwest Electricity Capacity in 2030

5 GW net new capacity by 2030 is needed for reliability (450 MW/yr)

With planned coal retirements of 3 GW, 8 GW of new capacity by 2030 is needed (730 MW/yr)

If all coal is retired, then 16 GW new capacity is needed (1450 MW/yr)

GHG Free Generation (%)

<table>
<thead>
<tr>
<th></th>
<th>2018 Baseline</th>
<th>2030 Baseline</th>
<th>2030 No Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018 Baseline</td>
<td>12</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>2030 Baseline</td>
<td>11</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>2030 No Coal</td>
<td>7</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

Carbon (MMT CO2)

<table>
<thead>
<tr>
<th></th>
<th>2018 Baseline</th>
<th>2030 Baseline</th>
<th>2030 No Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018 Baseline</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>2030 Baseline</td>
<td>7</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

% GHG Reduction from 1990 Level

<table>
<thead>
<tr>
<th></th>
<th>2018 Baseline</th>
<th>2030 Baseline</th>
<th>2030 No Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018 Baseline</td>
<td>-12%*</td>
<td>61%</td>
<td>61%</td>
</tr>
<tr>
<td>2030 Baseline</td>
<td>67</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>2030 No Coal</td>
<td>31%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Assumes 60% coal capacity factor
A resource’s contribution to system reliability

What portion of a generator’s nameplate capacity can you count on during times of system stress?

In practice, determining capacity values of variable resources is a complicated exercise

Illustrative Capacity Value by Resource Type

- Fossil
 - 95 MW Capacity Value
- Wind
 - 7 MW Capacity Value
- Solar
 - 12 MW Capacity Value
- Hydro
 - 55 MW Capacity Value

100 MW nameplate
Resource Adequacy Challenges in a High Renewables System

1. High Load
 - 1-in-50+ peak load year
 - Highest on record
 - Loss of load event of nearly 48 hrs
 - Loss of load magnitude of over 30 GW

2. Low Renewables
 - Low renewable production despite > 100 GW of installed capacity during some hours
 - 1-in-20 low hydro year
 - 5th lowest on record

3. Drought Hydro Year
 - Water levels critically low
 - 10th driest year on record

- Lost Load
- Demand Response
- Storage
- Variable Generation
- Hydro
- Dispatchable Generation
- Load

Energy+Environmental Economics
RESOURCE ADEQUACY IN 2050
Electric Capacity in 2050

Removing final 1% of carbon requires additional $100b to $170b of investment

1CPS+ \% = renewable/hydro/nuclear generation divided by retail electricity sales
2GHG-Free Generation \% = renewable/hydro/nuclear generation, minus exports, divided by total wholesale load
Gas capacity factor declines significantly at higher levels of decarbonization.

Significant curtailed renewable energy at deep levels of carbon reductions.
Resource Adequacy Challenges in a High Renewables System

1. High Load
 - 1-in-50+ peak load year
 - Highest on record

2. Low Renewables
 - Low renewable production despite > 100 GW of installed capacity during some hours
 - 1-in-20 low hydro year
 - 5th lowest on record
 - Loss of load event of nearly 48 hrs
 - Loss of load magnitude of over 30 GW

3. Drought Hydro Year
 - 1

Days: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

GW

Lost Load
Demand Response
Storage
Variable Generation
Hydro
Dispatchable Generation
Load

Energy + Environmental Economics

23
Marginal cost of CO₂ reductions at 90% GHG Reductions or greater exceed most estimates of the societal cost of carbon which generally range from $50/ton to $250/ton\(^1\), although some academic estimates range up to $800/ton\(^1\).
Marginal cost of absolute 100% GHG reductions vastly exceeds societal cost of carbon.
The electric sector is a key driver of economy-wide decarbonization. Low-GHG electricity enables decarbonization throughout the economy.

Given the pivotal role of electricity, reliability is key. However, the region faces both near- and long-term reliability issues without firm capacity.

Natural gas power plants have a key role to play in maintaining reliability, but those plants' usage decreases rapidly over time.

Potential resources that could supplant natural gas as a key reliability resource are not commercially available.
Thank You!

Energy and Environmental Economics, Inc. (E3)
44 Montgomery Street, Floor 15
San Francisco, CA 94104
Tel 415-391-5100
Web http://www.ethree.com

Dan Aas, Senior Consultant (dan@ethree.com)
E3 studies cited in this presentation

+ **Pacific Northwest Low-Carbon Scenario Analysis (2017)**

 - Geography: WA, OR, ID, Western MT

+ **Pacific Northwest Pathways to 2050 (2018)**

 - Geography: WA, OR

+ **Resource Adequacy in the Pacific Northwest (2019)**

 - Geography: WA, OR, ID, Western MT, Western WY, UT
100% Reduction Portfolio Alternatives in 2050

Clean baseload or biogas or ultra-long duration storage resource could displace significant wind and solar.

<table>
<thead>
<tr>
<th>Carbon (MMT CO2)</th>
<th>50</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Cost Delta ($B)</td>
<td>Base</td>
<td>$16- $28</td>
<td>$14-$21</td>
<td>$550-$990</td>
<td>$4 - $9</td>
</tr>
<tr>
<td>Additional Cost ($/MWh)</td>
<td>Base</td>
<td>$52-$89</td>
<td>$46-$69</td>
<td>$1,800-$3,200</td>
<td>$14 - $30</td>
</tr>
</tbody>
</table>
Effective Capacity by Resource

Effective capacity from wind, solar, storage, and demand response is limited due to saturation effects.

- **Diverse Wind (NW, MT, WY)**
- **Solar**
- **6-Hr Storage**
- **Demand Response**

ELCC = Effective Load Carrying Capability = firm contribution to system peak load